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Abstract

Long, naturalistic stimuli are effective in evoking meaningfully differential neural
response patterns between groups. However, the resulting timeseries data often have a high
number of features compared to a limited sample size, increasing the likelihood of overfitting
and reducing predictive power. This paper introduces multi-timepoint pattern analysis (MTPA)
as a temporal dimension reduction approach for improving prediction accuracy when building
models with long neural timeseries data. Using feature selection with elastic net regression,
MTPA identifies predictive neural patterns while preserving the temporal structure and
interpretability of the data. Across two experiments with distinct populations and objectives,
MTPA demonstrated consistent advantages over approaches using principal component
analysis (PCA), windowed averaging, and no dimension reduction. Experiment 1 predicted
persistent work-related psychological states in business professionals, achieving accuracies up
to 79.1%. Experiment 2 predicted cognitive load and narrative context during video viewing in
undergraduates, with accuracies up to 66.5%. These findings suggest that MTPA may be a
useful tool for analyzing neural data from extended naturalistic designs, enabling researchers to
improve prediction accuracy across diverse outcomes and obtain new insights into the
temporal dynamics of neural responses.
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It is widely believed that a 10:1 sample-to-feature ratio is optimal for machine learning
classification (Concato et al., 1995; Peduzzi et al., 1996; c.f., Vittinghoff & McCulloch, 2007).
This poses a challenge for neuroscientists, as the cost, time, and resource-intensive nature of
neuroimaging typically constrain experimental sample size. At the same time, naturalistic
stimuli, such as movie clips, are becoming more common in brain-as-predictor approaches (e.g.,
Dieffenbach et al., 2021; Li et al., 2022; Parkinson et al., 2018; Yeshurun et al., 2017). While
these stimuli are beneficial for evoking distinguishable neural response patterns between
groups that extend to real-world processes (Jdaskeldinen et al., 2021; Nastase et al., 2020; Finn
et al., 2020), they necessarily generate a high number of features. A typical study might include
30 participants (samples) but hundreds of timepoints (features), creating a sample-to-feature
ratio closer to 1:10 instead of 10:1. This can increase the risk of overfitting and decrease the
model’s ability to predict out-of-sample cases (Guyon & Elisseeff, 2003; Hua et al., 2009; Kohavi
& John, 1997). To retain the richness of extended stimuli while still enabling robust predictive
modeling, we propose reducing the temporal dimensionality of neural timeseries data prior to
classification.

Neuroscientists currently address the problem of high dimensionality in a spatial context
when performing multivoxel pattern analysis (MVPA). In some cases, fMRI may record 100,000
voxels per volume but only a few hundred or so trials (Mwangi et al., 2014), so MVPA applies
dimension reduction to remove uninformative voxels prior to training the classifier
(Weaverdyck et al., 2020). No such systematic approach exists for social neuroscientists aiming
to reduce the dimensionality of a long neural timeseries following a naturalistic stimulus, so we

introduce multi-timepoint pattern analysis (MTPA) as a temporal analog to MVPA. While MVPA
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performs a spatial searchlight to select for the most predictive voxels, channels, or regions,
MTPA exercises feature selection over a timeseries, effectively serving as a temporal searchlight
to determine the most predictive timepoints.

A promising approach within MTPA is feature selection through elastic net regression,
which combines penalties from lasso and ridge regression to reduce dimensionality while
retaining the most predictive features (Zou & Hastie, 2005). By selecting for individual features
without transforming or aggregating the data, elastic net preserves interpretability between
the features, cognitive processes, and timepoints in the stimulus. Elastic net-based MTPA was
first developed for another study (Goldstein et al., 2025) to predict psychological outcomes in
business professionals. While this initial work demonstrated the method’s utility, it focused
exclusively on elastic net and did not compare it to other dimension reduction approaches,
including feature extraction techniques like principal component analysis (PCA; Jolliffe &
Cadima, 2016) or down-sampling techniques like windowed-averaging.

Present study

The purpose of this study is to introduce and validate the MTPA approach, offering a
new tool for building predictive models with long neural timeseries. To show how this method
can be applied generally and affect prediction accuracy for a range of outcomes, we apply
MTPA to two separate datasets, each with different scientific objectives, populations, and
outcome measures.

Experiment 1 aims to predict whether real-world businesspeople feel overwhelmed,
burned out, or in need of a new or different challenge in their career. Experiment 2 aims to

predict a) whether people are experiencing cognitive load while they watch a video and b)
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whether people are given context for the protagonist’s behavior prior to watching the video.
Together, these experiments allow us to explore how different approaches perform when
predicting persistent yet malleable mental states (Experiment 1), cognitive processes
(Experiment 2), and experimentally-induced narrative perspectives (Experiment 2). Across both
experiments, participants’ brain responses were measured with functional near infrared
spectroscopy (fNIRS), which serves as an especially useful tool for predicting with extended
naturalistic stimuli given its superior portability, tolerance for movement, and participant
comfort compared to fMRI and EEG (Burns & Lieberman, 2019; Scholkmann et al., 2014).

While MTPA uses feature selection to reduce dimensionality, we also compare its
performance to other dimension reduction techniques, including a feature extraction-based
MTPA using PCA, down-sampling with windowed averages, and models with no temporal
dimension reduction. We focus our analyses on neural activity in the dorsal mPFC (dmPFC),
anterior mPFC (amPFC), and TPJ — fNIRS-accessible default mode network hubs respectively
implicated in mentalizing and social cognition, affective and self-referential processing, and the
construction of subjective construals (Lieberman, 2022; Lieberman et al., 2019; Roy et al.,
2012).

Across both studies, we expect that MTPA will outperform the other approaches in
prediction accuracy. Although we expect feature extraction-based MTPA to predict outcomes
more accurately than models that use down-sampling and no dimension reduction, we expect
feature selection-based MTPA to be most generally effective, ultimately making the case for an
interpretable and predictive approach tailored to the temporal structure of extended

naturalistic stimuli.
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While the main scope of this project is to compare MTPA to more conventional analytic
approaches, we also have hypotheses surrounding the predictive capability of each ROI. For
predicting people’s psychological lenses surrounding their careers in Experiment 1 and whether
people were given narrative context in Experiment 2, we expect that all ROIs will be predictive
in some capacity given their roles in high-level meaning making and socio-cognitive processing
broadly. For Experiment 2, we expect that cognitive load will affect activity in medial prefrontal
areas while TPJ processing will remain unchanged (see the CEEING Model of Pre-Reflective
Subjective Construal; Lieberman, 2022), so only activity in the amPFC and dmPFC should
reliably predict whether people are experiencing cognitive load.

Experiment 1: Methods

The data for Experiment 1 were reported in a separate study using a single analytical
approach and focusing on the psychological implications of the findings (Goldstein et al., 2025).
That paper provides a comprehensive description of the experimental design, data collection,
and primary results. The current study focuses specifically on comparing different dimension
reduction techniques for neural timeseries data.

Participants

Participants (N = 68) were business executives who attended “Summit LA,” which is an
organizational festival that invites successful founders, CEOs, and other executives to build
community and discuss ideas for a weekend in Los Angeles. Of the 68 participants, 47 identified
as male and 21 identified as female. One participant did not fill out the post-study survey

necessary for analysis, leaving a final sample of N = 67 (mean age = 41.5 years old, SD = 9.87).
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Procedure

Participants who provided consent were invited into a pop-up neuroimaging lab in an
office suite near the festival and fitted with an fNIRS cap. The experimental session consisted of
two parts. First, participants engaged in a group interaction task where they took turns pitching
each other ideas. The current study uses data from the second half of the session, unrelated to
the group interaction task. In this phase of the experiment, participants’ brains were scanned
with fNIRS while they watched a video compilation of other executives talking about their
attitudes toward work (Figure 1). After watching the videos, participants completed a post-
study survey with a battery of questions probing their thoughts and feelings toward their
career.
Outcome measures

After watching the videos, participants responded to four outcome measures that
probed negative social-emotional sentiments toward their career: “I need a new or different
challenge,” “I feel overwhelmed,” “I feel underappreciated,” and “I feel burned out.”
Participants were instructed to respond to the measures as if they were thinking about their
career in general. We used a 7-point Likert scale from “strongly disagree” to “strongly agree.”
We selected these specific outcomes because we believed them to be generally representative
of aversive work-related experiences yet distinct enough from one another to capture different
elements of the phenomenon.

To prepare data for machine learning, responses were binarized into “high” and “low”
groups. Midpoints of response distributions were chosen to ensure near-balanced group

distributions. Due to skewness, the underappreciated measure was excluded from further
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analysis. Minority groups were upsampled via randomized repetition to address class
imbalance.
fNIRS data acquisition and preprocessing

We used NIRx NIRScout machines with a sampling rate of 3.906 Hz at wavelengths of
760 and 850 nm. Optodes on the fNIRS caps were arranged at 3-cm average source-detector
separation distance over the prefrontal cortex (PFC), the temporal parietal junction (TPJ) and
superior parietal lobule (Figure 2). 10-10 Ul external positioning system was used to standardize
the layout of our probes.

fNIRS data was sent through a customized preprocessing pipeline (Binnquist & Burns,
2021). Several steps were then employed to reduce dimensionality and smooth the data during
preprocessing. First, we selected specific brain ROIs. Given neural synchrony research
implicating the default mode network in semantic and socio-cognitive processing (Lieberman,
2022), we focused our search to channels over the bilateral TPJ, the amPFC, and the dmPFC.
Once the channels were averaged into their respective ROIs, we resampled the timeseries for
each ROI from 3.906 Hz to one sample per second to further smooth our signal.
Model training and prediction

This research compared analytic approaches for neural timeseries-based machine
learning models. For each model, our analysis process can be broken down into two parts —
dimension reduction and classification. Analyses primarily differed in how they reduced
dimensionality.

Dimension reduction. We applied three approaches: MTPA with elastic net feature

selection, MTPA with PCA feature extraction, and a down-sampling method using windowed
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averages. These approaches are also compared to a model which used the entire neural
timeseries without dimension reduction.

MTPA with elastic net feature selection. The feature selection-based MTPA was
developed for Goldstein et al. (2025) to predict whether people feel overwhelmed, burned out,
or in need of a new or different challenge with this same dataset. In this case, the temporal
searchlight was performed with elastic net regression — a regularized regression technique that
combines penalties from lasso (L1) and ridge (L2) to determine the best features. Lasso alone
tends to delete features too easily if they are highly correlated, as in a timeseries (Zou & Hastie,
2005). On the other hand, ridge regression handles multicollinearity well, but it does not
eliminate features. Elastic net combines the strengths of both methods — robust shrinkage and
retention of useful correlated variables, making it particularly well-suited for high-dimensional
datasets like those encountered in neuroimaging. By nature of being a feature selection
approach, elastic net also allows us to map exact features back onto timepoints in the stimulus,
offering added benefit of exploring what is occurring in the stimulus when neural responses
diverge between groups.

For these analyses, we used MATLAB's lassogim to execute the elastic net feature
selection. lassoglm determines the variables that are most representative of between group
differences by selecting the lambda, or shrinkage parameter representing the strength to which
coefficients are penalized and reduced to 0, automatically through 10-fold cross-validation.
Elastic net is also adjusted by a penalty parameter, alpha, which determines the relative
contribution of the lasso and ridge penalties. For our purposes, the alpha parameter was

manually set at 0.9 — closer to lasso to encourage as much sparsity as possible while still
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accounting for potential correlations among predictors. The combination of alpha and lambda
parameters on the training set determined which features were retained. We then reduced the
features of the training and testing timeseries to the selected features from the elastic net. All
other features in the training and testing timeseries were discarded.

MTPA with PCA feature extraction. The feature extraction-based MTPA used principal
component analysis (PCA) to reduce the dimensionality of the neural timeseries. PCA
transforms high-dimensional data into a smaller set of orthogonal components while retaining
as much variance as possible. The first component captures the direction of maximum variance
in the data, the second component captures the maximum variance orthogonal to the first, and
so on. While PCA does not retain individual timepoints in the way feature selection methods
do, it allows for a compact representation of the neural data, which can be particularly
advantageous for high-dimensional datasets with limited sample sizes.

We used MATLAB’s pca function to perform PCA feature extraction. To ensure that we
optimized the number of components while avoiding overfitting, we applied 10-fold cross-
validation within the training set to test the performance of models with different numbers of
components. The number of components that achieved the highest cross-validated accuracy in
the training data was then retained. Once the optimal components were identified, the training
and testing timeseries were both projected onto this reduced set of components, and all other
features were discarded.

Down sampling with windowed averages. For the down-sampling approach, we
averaged over sets of features rather than selecting or transforming individual variables. By

averaging adjacent timepoints within a window, this method helps to suppress noise and
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variability while retaining meaningful trends in the data. This can be especially useful for
cognitive processes when fine-grained temporal fluctuations may not provide much predictive
value, as may be the case for high-level cognitive and social processes.

To optimize the performance of this approach, we used 10-fold cross-validation within
the training set to test a range of possible window sizes from 2 seconds to 1-minute. The
window that yielded the best cross-validated accuracy was then applied to both the training
and test datasets.

Classification via neural reference groups approach. The classification process was
identical for all analyses compared here. We followed a neural reference groups approach
(Dieffenbach et al., 2021) that trained models to recognize patterns of neural activity for people
in two distinct groups and then classify new people based on the group with which they show
more neural similarity. Considering that the main goal of this paper is to evaluate how
dimension reduction affects prediction with neural timeseries, we chose a logistic regression
classifier over other models because of its linear framework and simplicity, though different
methods may also be employed with the same dimension reduction approaches.

We used leave-one-out cross validation to train and test our model. Our analyses were
performed independently for each question and each ROI. The predictive performance of the
model was evaluated on the held-out test samples’ timeseries. This entire process, including
the dimensionality reduction was repeated for every sample in our data, and we completed 50
iterations of this process to reduce sampling bias in our prediction. Cross-validated predictive

performance was averaged across folds and iterations.
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Significance testing and comparison

Permutation testing was used to assess how our actual predictive performance
compared to what we would anticipate by chance. We conducted each approach described
above 1000 times with shuffled labels. The outcome was a random chance-level distribution of
cross-validated prediction accuracies representing the null hypothesis. Statistical significance
was calculated by finding the number of permuted samples that are equal to or exceed the
observed prediction accuracy, divided by the total number of iterations.

To evaluate the performance of the four methods across ROI-measure combinations, we
conducted one-way ANOVA tests comparing prediction accuracies for each combination. The
accuracies from the 50 iterations were used as the distributions for each group in the ANOVA.
Significant differences were followed by post hoc Tukey’s HSD tests to identify pairwise
differences between methods (e.g., elastic net vs. no dimension reduction).

Experiment 1 Results and Discussion

Feature selection-based MTPA successfully predicted participants’ psychological
outcomes in four out of nine tests, spanning two of three measures (feeling overwhelmed and
needing a new or different challenge) and all three ROls (Figure 3). Using neural activity from
the TPJ, the MTPA accurately predicted whether participants felt overwhelmed with 72.84%
accuracy (p = 0.004). Neural activity from the dmPFC also predicted whether people felt
overwhelmed with 64.51% accuracy (p = 0.034). The strongest predictive performance overall
occurred when neural activity in the dmPFC was used to predict whether participants felt in

need of a new or different challenge in their careers (79.13%, p < 0.0001). The amPFC also
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showed predictive power approaching significance for this outcome, with accuracy reaching
63.29% (p = 0.058). These data were reported in Goldstein et al. (2025).

To evaluate how feature selection-based MTPA performed relative to other approaches,
we tested the prediction accuracy of a feature extraction-based MTPA using PCA, down
sampling with windowed averages, and a model using the full timeseries without
dimensionality reduction. Across these approaches, PCA, windowed averaging, and the no
dimension reduction model each showed moderate accuracy only for predicting whether
people were burned out using the dmPFC. Prediction accuracies were 66.60% (p = 0.011),
63.43% (p = 0.037), and 65.79% (p = 0.014) for PCA, windowed averaging, and the full
timeseries models without feature selection, respectively. These approaches did not predict
any other outcomes or brain measures.

To evaluate how feature selection-based MTPA performed relative to other approaches,
we conducted ANOVA comparisons across analytical approaches for the ROl-measure
combinations that demonstrated at least modest prediction accuracy. The results showed
significant differences in prediction performance for all comparisons (p < 0.0001). Post hoc
Tukey's HSD tests revealed that elastic net statistically outperformed all other approaches for
four out of five tests, while PCA performed best on the remaining test, followed closely by no
dimension reduction (Figure 4). Specifically, when predicting whether someone felt
overwhelmed using the TPJ, elastic net achieved significantly higher accuracy than PCA,
windowed averaging, and no dimension reduction (mean differences: +27.58%, +24.18%, and
+22.15%, respectively, all p < 0.0001). When predicting whether someone felt overwhelmed

using the dmPFC, elastic net again outperformed PCA, windowed averaging, and no dimension
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reduction (mean differences: +15.52%, +15.28%, and +15.05%, all p < 0.0001). Elastic net
exhibited the highest performance when predicting whether someone needed a new or
different challenge with the dmPFC, exceeding PCA, windowed averaging, and no dimension
reduction (mean differences: +28.07%, +26.07%, and +19.16%, all p < 0.0001). Elastic net also
demonstrated significantly higher accuracy than PCA, windowed averaging, and no dimension
reduction when predicting whether someone needed a new or different challenge with the
amPFC (mean differences: +7.00%, +5.97%, and +4.03%, all p < 0.0001). Conversely, elastic net
achieved significantly lower accuracy compared to PCA, windowed averaging, and no dimension
reduction when predicting whether someone was burned out with the dmPFC (mean
differences: -18.72%, -15.55%, and -17.91%, respectively, all p < 0.0001).

Results from this experiment demonstrate the advantages of MTPA models using elastic
net feature selection. While feature extraction, down-sampling, and using the full timeseries
each predicted one out of nine possible ROlI-measure combinations, feature selection-based
MTPA successfully predicted four combinations spanning two out of three outcome measures
and all target ROls. These findings confirmed our hypotheses, offering preliminary evidence for
MTPA’s use as a tool for predicting complex psychological states with neural timeseries data.

Experiment 2 Methods

Experiment 2 aimed to predict two distinct outcomes: whether participants were
experiencing experimentally-induced cognitive load while watching a video and whether
participants were given prior contextual information about the protagonist’s behavior prior to

the video. Although the type of outcome measures and participant population differ from
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Experiment 1, the model training, prediction, significance testing, and comparison procedures
remain identical to ensure consistency and support the generalizability of the previous findings.
Participants

Participants (N = 92) were undergraduate students recruited through the Psychology
student subject pool. 20 identified as male, 71 as female, and 1 as non-binary. The mean age
was 23.16 years (SD = 6.00). We aimed to recruit 30 participants per condition, with a slight
oversampling to account for potential data loss. Due to equipment failure, data from one
participant were excluded, resulting in 91 participants included in the final analysis. Participants
were required to be fluent English speakers, have normal or corrected-to-normal vision, and be
naive to the movie clip used as a stimulus.
Procedure

All participants were scanned with fNIRS while they watched a three-minute scene from
the movie “Brothers.” The video depicted a character behaving aggressively while other
characters become upset and try to restrain him. The protagonist’s behavior could be
interpreted through either situational or dispositional factors, and the video was displayed
without sound to create more variability in interpretation. Participants viewed the clips under
the following conditions: no-context, context, and context/dual-task (Figure 5). In the no-
context condition, participants were simply instructed to watch the video closely. In the context
condition, participants were told “This man has just learned that his wife has been cheating on
him with his best friend.” Participants in the context/dual-task condition were given the same

prompt, but they were also instructed to memorize a series of eight random digits prior to the
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video, repeat these numbers in their head during the video, and recall the numbers in the
correct order after the video. This simple dual-task design was used to induce cognitive load.
Outcome measures

We aimed to predict central aspects of participants’ condition assignment — whether
they were experiencing cognitive load and whether people received context for the
protagonist’s behavior. To ensure a balanced sample and reduce confounds, each outcome only
utilized two out of the three conditions. When predicting whether people were experiencing
cognitive load, we used the context and the context/dual-task conditions as our two classes. As
a result, both classes were consistent in that they received context, differing only in whether
they experienced cognitive load. When predicting whether people received context, the
context and no context conditions were used. In this case, neither class performed the dual-
task, so they differed only in whether they received context.
fNIRS data acquisition and preprocessing

We used NIRx NIRSport2 machines with a sampling rate of 3.8147 Hz at wavelengths of
760 and 850 nm. The probe layout was comprised of 32 light sources and 32 detectors with a 3-
cm average source-detector separation distance over the entire head (Figure 6). 10-10 Ul
external positioning system was used to standardize the layout of our probes.

fNIRS data was sent through the same preprocessing pipeline described in Experiment 1.
Though we had full-head coverage with this montage, we selected the same ROls as in the
previous experiment to limit comparisons and remain consistent. We resampled the timeseries

for each ROl to one sample per second to further smooth our signal.
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Experiment 2 Results and Discussion

Feature selection-based MTPA using elastic net regression successfully predicted both
outcomes — whether someone was experiencing cognitive load while they watched a video and
whether someone was given context for a character’s behavior prior to the video (Figure 7).
First, neural activity in the amPFC predicted whether participants were experiencing cognitive
load with 66.53% accuracy (p = 0.026). Models using neural activity from the TPJ predicted
whether people had received contextual information about the protagonist prior to the video
with 65.93% accuracy (p = 0.024).

Beyond the elastic net approach, models using feature extraction-based MTPA with PCA
were able to predict whether participants received narrative context with neural activity from
the amPFC (64.75%, p = 0.031). The windowed averaging approach produced the next highest
prediction accuracy for the same ROl-measure combination (62.30%, p = 0.049). The full
timeseries did not achieve significant predictive performance for any of the measures or ROls.

To evaluate how feature selection-based MTPA performed relative to other approaches,
we conducted ANOVA comparisons across analytical approaches for the ROl-measure
combinations that demonstrated significant prediction accuracy. The results showed
differences in prediction performance for all comparisons (p < 0.0001). Post hoc Tukey's HSD
tests revealed that elastic net statistically outperformed all other approaches for two out of
three tests, while PCA performed most effectively for the remaining test (Figure 8). Specifically,
when predicting whether someone was experiencing cognitive load with the amPFC, elastic net
achieved significantly higher accuracy than PCA, windowed averaging, and no dimension

reduction (mean differences: +20.40%, +13.07%, and +15.23%, all p < 0.0001). When using the
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TPJ to predict whether someone was given context prior to watching the video, elastic net also
outperformed PCA, windowed averaging, and no dimension reduction (mean differences:
+9.69%, +6.72%, and +8.76%, all p < 0.0001). However, when using the amPFC to predict
whether someone was given context prior to watching the video, PCA outperformed all other
methods (elastic net: +4.23%, p < 0.0001; windowed averaging: +2.16%, p = 0.003; no
dimension reduction: +2.98%, p > 0.0001).

Overall, these findings replicate and extend the findings from Experiment 1. PCA, and to
a lesser extent windowed averaging, was effective in predicting one measure with one ROI, but
the elastic net approach was able to predict both outcome measures using two out of three
ROIs. By successfully predicting both cognitive load and prior narrative context from neural
data, MTPA proves to be an effective method for identifying predictive neural patterns in
naturalistic settings above and beyond alternative methods or no temporal dimension
reduction. These findings also support MTPA’s general effectiveness across different types of
measures and participant populations.

Additionally, by demonstrating that the amPFC predicts whether someone is
experiencing cognitive load or not while the TPJ predicts narrative context, the elastic net MTPA
revealed patterns that align with emerging theories differentiating sub-areas of the default
mode network (Lieberman, 2022). Specifically, the CEEing model hypothesizes that TPJ will be
more sensitive to narrative framing than cognitive load due to its role in integrating sensory and
non-sensory information into pre-reflective construals, whereas mPFC regions will be more
sensitive to cognitive load given their role in more effortful reflective processes. To illustrate

these functional differences, a two-way ANOVA between ROl (amPFC and TPJ) and outcome
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measure (whether someone was under cognitive load and whether someone received narrative
context prior to the video) revealed a significant interaction: F(1, 196) = 316.95, p < 0.0001
(Figure 9). This interaction indicates that the effect of the specific ROl depends on the measure
being predicted. There were also simple effects for ROl within each measure (load: F(1, 98) =
177.98, p < 0.0001; narrative context: F(1, 98) = 140.99, p < 0.0001) and for the measure within
each ROI (amPFC: F(1, 98) = 155.31, p < 0.0001; TPJ: F(1, 98) = 163.85, p < 0.0001). Together,
these results suggest functional differentiation across the TPJ and amPFC align with theoretical
frameworks like the CEEing model — the TPJ demonstrates a significant role in how context
framing shapes how we see and understand a narrative while the amPFC demonstrates a
greater sensitivity to cognitive load. Notably, these patterns were only apparent when using the
MTPA approach with elastic net, further underscoring the advantage of applying feature
selection-based dimension reduction techniques when working with neural timeseries data.
Discussion

This study introduces and validates MTPA as an effective method for reducing the
temporal dimensionality of neural timeseries data into a sparse and interpretable set of
features for machine learning. Across two experiments, feature selection-based MTPA using
elastic net regression consistently outperformed than alternative and more conventional
methods, predicting six out of twelve possible tests. PCA and windowed averaging performed
effectively on two occasions. Using the full timeseries without feature selection was successful
only once. These findings demonstrate the broad efficacy and applicability of using MTPA prior

to classification, specifically emphasizing the advantage of feature selection-based MTPA.
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Approaches were compared across significant ROl-measure combinations, and elastic
net outperformed all other methods in six out of eight tests, often with large and statistically
significant mean differences (e.g., elastic net exceeded PCA, windowed averaging, and baseline
by 27.6%, 24.2%, and 22.2%, respectively, when predicting whether someone needed a new or
different challenge with the dmPFC). In contrast, PCA emerged as the top-performing method
in two tests, suggesting that PCA can serve as a viable alternative in some cases although it
mostly fell short of elastic net overall. The baseline approach that did not apply dimension
reduction and windowed averaging lagged elastic net or PCA in all comparisons.

Notably, feature selection-based MTPA generalized well across both experiments
despite their differences in methods and objective. Experiment 1 was conducted in the field
with a real-world population of business professionals and successfully predicted persistent,
oft-hidden social-emotional states such as feeling overwhelmed and needing a new or different
challenge in one’s career. Experiment 2 was conducted in a controlled laboratory setting with
an undergraduate participant population and focused on cognitive load and narrative context
during video viewing. MTPA with elastic net successfully predicted outcome measures in all
three tests. Feature selection-based MTPA’s ability to generalize across distinct populations
(real-world and lab-based) and outcome types (persistent psychological states, cognitive
processes, and contextual understanding) highlights its strength and versatility.
Interpretability and practical applications

Beyond its higher predictive power compared to other methods explored here, MTPA
offers a second critical advantage — interpretability. By selecting specific timepoints that

contribute to group-level differences, elastic net allows researchers to map neural responses
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back to precise moments in a stimulus. This temporal specificity allows us to reverse-engineer
the specific timepoints in the video stimulus that evoke distinct neural profiles between groups,
offering insights into the connection between stimulus content, neural activity, and
psychological lenses (for an example, see Goldstein et al., 2025).

In contrast, PCA transforms the data into components that maximize variance but lose
direct connection to the original timepoints. While PCA achieved moderate prediction accuracy
in some cases, its lack of temporal interpretability limits its utility for understanding the
dynamics of neural responses during complex, naturalistic stimuli. Similarly, methods like
windowed averaging smooth over meaningful temporal fluctuations and fail to leverage the
richness of long neural timeseries. We believe this is another reason why MTPA with elastic net
feature selection is the optimal choice for most cases using naturalistic stimuli.

Conclusion

The ability to analyze neural responses from extended naturalistic designs has become a
central goal in social neuroscience. However, while these stimuli afford ecologically valid
experiences that closely approximate real-world processes, their length and resulting temporal
complexity pose major computational challenges due to overfitting and poor generalization.
This study demonstrates that MTPA alleviates these challenges by reducing the timeseries into
sparse yet interpretable patterns of timepoints that improve predictive power. Consistent
findings from the two experiments showed that feature selection-based MTPA predicts a
variety of measures above and beyond PCA, windowed averaging, and no temporal dimension
reduction — approaches that all either eliminate psychological interpretability, aggregate over

important variability, or use overwhelmingly long neural timeseries. As naturalistic stimuli
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become increasingly prevalent, methods like MTPA will be essential for leveraging the brain to
predict how people think, feel, and behave in dynamic, real-world contexts.
Acknowledgements

We thank the Summit Series, L.L.C. for granting us access to the festival space and
attendees for Experiment 1. We would also like to thank Richard Barbour, Lamija Pa3ali¢, and
Angelo Herrera from NIRx for various forms of technical support. We thank Dan Ames, Razia
Sahi, Kevin Tan, Grace Gillespie, Eugene Hsu, Patrycja Szafran, and Maisy Tarlow for all their
hard work in collecting the data in a short period of time. For their help with data collection in
Experiment 2, we would like to thank undergraduate research assistants Malia Groth, Tracy
Mao, Laura Li, Howard Fung, and Brandon Ha. Additionally, we thank Dr. Hongjing Lu of the
UCLA Computational Vision and Learning Lab for her coursework and guidance that inspired the
initial ideas for this project.
Funding and ethics

The entire project was made possible by funding from the National Defense Science and
Engineering Graduate (NDSEG) Fellowship. Experiment 1 was supported by an anonymous
donor. Experiment 2 was supported by unrestricted funds. This experiment received ethical
approval by UCLA Institutional Review Board (#22-001785).
Disclosure of interest

The authors declare no competing interests.
Data availability

Data for these experiments can be accessed online at https://osf.io/b84c3/.



MULTI-TIMEPOINT PATTERN ANALYSIS (MTPA) 23

“Being & l&adenhas been exfrpordinarily
tolling on me physically and Peonally”

Figure 1. Stills from the experiment and video stimulus. The left image shows participants
wearing fNIRS and watching the video together. The right image is a still from the video
stimulus, where other business executives were instructed to speak about the positive and

negative aspects of their work. Captions were not included in the original stimulus.






MULTI-TIMEPOINT PATTERN ANALYSIS (MTPA) 24

Figure 2. Montage of fNIRS probes across the prefrontal cortex, temporal parietal junction,
and superior parietal lobule. The red dots represent source optodes and the blue dots
represent detector optodes. ROls are highlighted in orange (amPFC), purple (dmPFC), and green

(TPJ).
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Figure 3. Heatmap of prediction accuracies for each analysis approach, ROIl, and outcome

measure. Note: ****p<0.0001, ***p<0.001, **p<0.01, *p<0.05, ~p<.0.06
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Figure 4. ANOVA comparisons of prediction accuracies across analysis methods for significant

ROI-measure combinations. Bars represent mean prediction accuracies with standard

deviations, and significance brackets indicate pairwise differences from Tukey’s HSD tests.

Note: ****p<0.0001, ***p<0.001, **p<0.01, *p<0.05
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Figure 5. Instructions provided to participants in each of the three conditions for Experiment
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Figure 6. Montage of fNIRS probes for the 108-channel full-head setup. The red dots represent
source optodes and the blue dots represent detector optodes. Red dots encircled with blue
rings represent short-channel detectors which aid in preprocessing. ROls are highlighted in

orange (amPFC), purple (dmPFC), and green (TPJ).
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Figure 8. ANOVA comparisons of prediction accuracies across analysis methods for significant
ROI-measure combinations. Bars represent mean prediction accuracies with standard
deviations, and significance brackets indicate pairwise differences from Tukey’s HSD tests.

Note: ****p<0.0001, ***p<0.001, **p<0.01, *p<0.05
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Figure 9. Interaction between brain region and outcome measure. Interaction and all post hoc

pairwise comparisons are significant p < 0.0001.
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